Liposomes- A review

Singh Arpita¹*, Srivastava Vikas Kumar¹, Gupta Amresh.¹
1. Goel Institute of Pharmacy and Sciences, Lucknow

ARTICLE INFO
Article history:
Received 05.09.2020
Accepted 23.11.2020
Published 15.12.2020

* Corresponding Author:
Singh Arpita
arpitmohan2010@gmail.com

https://doi.org/10.46956/ijihd.vi.116

Production and Hosted By
Saapbooks.com

ABSTRACT
The function of belayed vesicles as productive transporters for drugs, immunizations, indicative specialists, and other bioactive operators has prompted a fast headway in the liposomal drug conveyance system. The pharmacy- elements and pharmacokinetics properties are altered for the liposomal delivery system, which on the whole leads to an increased the rapeutic index with decreased toxicity. The liposome can be named multilamellar vesicles or unilamellar vesicles, which can be additionally named large unilamellar vesicles (LUV) or small unilamellar vesicles (SUV). The part of liposome as a medication conveyance framework is to convey drug in a controlled way, diminishing unfortunate reactions improving it is in vitro and in vivo action, just as lessening the harmfulness of the medication and upgrading the viability of the exemplified drug. This article gives a review of techniques to the planning of liposome, just as diagnostic strategies for control physical, concoction, and organic boundaries for various kinds of medications.

Keywords: Drug delivery system using liposomes; structural components of liposomes.

INTRODUCTION
The name liposome is derived from two Greek words: ‘Lips’ meaning fat and ‘Soma’ meaning body. Paul Ehrlich in 1906 started the period of improvement for focused conveyance when he conceived a medication conveyance system that would target drug legitimately to sick cells, what he called enchantment projectiles. "Liposomes are colloidal, vesicular structures made out of at least one lipid bilayers encompassing an equivalent quantity of watery compartments". The circle-like shell exemplified a fluid inside which contains substances, for example, peptides and protein, hormones, compounds, anti-microbial, antifungal, and anticancer operators. A free medication-infused in the circulation system normally accomplishes a helpful level for a brief span because of digestion and discharge. Medication epitomized by liposomes accomplishes remedial level for the long term as medication should initially be discharged from liposome before digestion and discharge [1].

Liposomes are little fake vesicles of a circular shape that can be made from cholesterol and characteristic non-harmful phospholipids. Because of their size and hydrophobic and hydrophilic character (besides biocompatibility), liposomes are promising frameworks for drug conveyance. Liposome properties vary significantly with lipid creation, surface charge, size, and the strategy for readiness. Moreover, the decision of bilayer segments decides the ‘unbending nature’ or ‘smoothness’ and the charge of the bilayer. For example, unsaturated phosphatidylcholine species from normal sources (egg or soybean phosphatidylcholine) give substantially more porous and less steady bilayers, while the soaked phospholipids with long acyl chains (for instance, dipalmitoylphosphatidylcholine) structure an unbending, a rather impermeable bilayer structure [2].

HISTORY
Liposome was first described by British hematologists Dr. Alec D Bingham in 1961 (published 1946), at the Abraham Institute, in Cambridge [3].

ADVANTAGES [4, 5]
Portion of the benefits of the liposome are as per the following:

© 2020 Published by South Asian Academic Publications. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/)
• Provides specific latent focusing on tumor tissues (Liposomal doxorubicin).
• Increased adequacy and helpful record.
• Increased dependability utilizing epitome.
• Reduction in poisonousness of the exemplified specialists.
• Site evasion impact.
• Improved pharmacokinetic impacts (decreased disposal, expanded dissemination lifetimes).
• Flexibility to couple with site explicit ligands to accomplish dynamic targeting.

DISADVANTAGES [6, 7]
• Less stability.
• Low solubility.
• Short half-life
• Phospholipids undergo oxidation, hydrolysis Leakage, and fusion High production cost.
• Quick uptake by cells of R.E.S.
• Allergic reactions may occur to liposomal constituents.
• Problem to targeting to various tissues due to their large size.

CLASSIFICATION OF LIPOSOMES [5]
Classification of liposome-based on structure parameter.
• MLV (Multilamellar vesicles (>0.5 μm)
• OLV (Oligolamellar Vesicles (0.1-1.0 μm)
• ULV(Unilamellar Vesicles (All sizes ranges)
• UVV (Multivesicular Vesicles(>1.0 μm)
• MUV (Medium Unilamellar Vesicles
• SUV (small Unilamellar Vesicles (20-100 μm)
• GUL (Giant Unilamellar Vesicles (>1.0 μm)
• LUV (Large Unilamellar Vesicles (>100nm)

Classification of liposomes based on the method of preparation
• DRV (Dehydration rehydration method)
• REV (SUVs/OLVs made by the reverse-phase evaporation method.)
• MLV-REV (MLVs made by reverse-phase evaporation)
• VET (Vesicles prepared by ExtrusionTechnique)
• FATMLV (frozen and thawed MLV)
• SPLV (Stable multilamellar vesicles)

Classification of liposomesbased on composition and application
• Conventional liposome
• Fusogenic liposome
• pH-sensitive liposome
• Cationic liposome
• Long circulatory (stealth) liposome
• Immuno liposome

STRUCTURE COMPONENT [8–11]
Phospholipid
These are gotten from the phosphatidic corrosive. The foundation of the particles is glycerol moieties. Glycerol containing phospholipids is the most widely recognized utilized part of the liposome plan and speak to the more noteworthy than half of the weight of lipid in organic layers. At C3 OH bunch is esterified to phosphoric acid. Example of phospholipids are
• Phosphatidy lethanolamine (Cephalin)
• Phosphatidyl serine (PS)
• Phosphatidyl inositol (PI)
• Phosphatidyl glycerol (PG)

For stable liposomes, soaked unsaturated fats are utilized. Unsaturated fats are not utilized, general

Sphingolipids
It is the Backbone of sphingosine or a related base. These are the significant constituents of plant and creature cells. This contains3 trademark building blocks.
• A mole of Fatty acids.
• A mole of sphingosine.
• A head gathering can change from basic liquor, for example, choline to extremely complex starches.

Most normal Sphingolipids-Sphingomyelin.
• Glycosphingo lipids.
• Gangliosides-Found on a dim issue, utilized as digger part for liposome production.

This particle contains complex saccharides with the buildups Sialic corrosive and their polar head gathering and subsequently has at least one negative charge at impartial pH. The liposome included giving a surface charged layer gathering.

Sterols
Cholesterol &derivative is frequently remembered for liposomes for-
• declining the ease or microviscosity of the bilayer
• falling the penetrability of the layer to water dissolvable molecules
• stabilize the film within the sight of natural liquids, for example, plasma (This impact utilized in the detailing of i.e. liposomes )

Liposome without cholesterol connects with plasma proteins viz. egg whites, transferring, and macroglobulin. These proteins tend to extract bulk phospholipids from liposomes, in this manner exhausting the monolayer of the vesicles leadings to physical unsteadiness.

Synthetic phospholipids
Example: For saturated phospholipids are-
• Dipalmitoyl Phosphatidyl choline (DPPC)
• Dstroph Phosphatidyl choline (DSPC)
• Dipalmitoyl Phosphatidyl ethanolamine (DPPE)
METHOD OF PREPARATION OF LIPOSOMES

1. Mechanical dispersion method

A. Lipid film hydration by handshaking: To create liposome lipid particles must be brought into a watery situation. At the point when dry lipid layer film is hydrated the lamellae expand and develop into myelin figures. Just mechanical disturbance gave by vortexing, shaking, swearing, or pipetting causes myelin figures to break and reseal the uncovered hydrophobic edges bringing about the arrangement of liposomes that can be made by hand-shaken technique. [12, 13]

B. Sonication: Sonication is maybe the most widely utilized technique for the readiness of SUV. Here, MLVs are sonicated either with a shower type sonicator or a test sonicator under a detached environment. The fundamental inconveniences of this technique are extremely low inner volume/epitome viability, conceivable corruption of phospholipids and mixes to be typified, elimination of enormous particles, metal contamination from test tip, and presence of MLV alongside SUV.

There are two types of sonication techniques:

(A) Probe Sonication: The tip of a sonicator is straightforwardly immersed into the liposome scattering. The vitality contribution to lipid scattering is high in this technique. The coupling of vitality at the tip results in nearby hotness subsequently, the vessel must be engaged in a water/ice shower. All through the sonication up to 1 h, over 5% of the lipids can be DE esterified. Additionally, with the test sonicator, titanium will swamp off and contaminate the solution.

(B) Bath sonication: The liposome scattering in a chamber is put into a shower sonicator. Controlling the temperature of the lipid scattering is normally simpler in this technique, as opposed to sonication by dispersal legitimately utilizing the tip. The material being sonicated can be secured in a sterile vessel, different from the test units, or under an inactive atmosphere [14, 15].

(C) Freeze thawed Liposome: SUVs are quickly solidified and defrosted gradually. The brief sonication scatters collected materials to LUV. The making of Unilamellar vesicles is because of the combination of SUV all through the cycles of freezing and defrosting. This kind of union is unequivocally hindered by expanding the phospholipid focus and by expanding the ionic quality of the medium. The embodiment efficacies from 20% to 30% were acquired [16, 17].

(D) Membrane extrusion: In this strategy vesicles substance are traded with scattering medium during breaking and resealing of phosphate lipid bilayer as they go through polycarbonate film and less weight is required here as the contrast with French weight cell at that point used to measure MLVs and LUVs. Finally, convoluted and nucleation trach films are framed [18].

(E) Dried reconstituted vesicles: Here the preformed liposomes are rehydrated to an aqueous fluid containing an active ingredient which is followed by dehydration of the mixture [18].

(F) French pressure cell: This technique is having the system of high pressure. This technique will give either unior Oligolamellar liposome of moderate size(30-80nm), these liposomes are more steady contrasted with the sonicated liposomes. This technique is having a few disadvantages are that underlying significant expense for the press and the weight cell liposomes arranged by this technique having less auxiliary deserts dissimilar to the sonicated liposome [19–21].

2. Solvent dispersion methods

A. Ethanol Injection: In ethanol infusion strategy the ethanolic lipid arrangement is quickly infused to an immense excess of the buffer which leads to the formation of large size MLVs. The disadvantages of the method are that the population is heterogeneous (30 to 110 nm). The liposome is very dilute, the removal of all ethanol is difficult and the probability of the various biologically active macromolecules to inactivate in the presence of even low amounts of ethanol is high (Deamer D.et al.,1976; SchierenH.A et al.,1978) [22].

B. Ether Injection: In ethanol infusion strategy the ethanolic lipid arrangement is quickly infused to an immense overabundance of preheated refined water or TRIS-HCl buffer. The consolidation of the medication in liposomal vesicle depends on its hydrophilic/hydrophobic character. Nimesulide as lipid dissolvable part joins preferable in liposomes over 5-fluorouracil which moves to the outer watery stage. The fundamental bit of leeway of ethanol infusion strategy is including of non-unsafe dissolvable as ethanol, just as simple scale-up of the technique. The chance of arrangement of an azeotrope with water lessens its applicability [23–25].

C. Reverse phase evaporation vesicles

The converse stage vanishing strategy is utilized with the natural solvents, for example, diethyl ether/isopropl ether or blend of diethyl ether and chloroform (1:1 v/v) and a blend of chloroform–methanol (2:1 v/v) containing phospholipids. The natural stage ought to be immiscible with the fluid stage, in this way an oil/water emulsion is made. Phosphate cushion saline or citrus Na3HPO4 cushion is added to the fluid stage to improve the effectiveness of liposome formulations. The development of liposome is permitted by proceeded with rotating vanishing of the natural solvents under vacuum. The fundamental favorable
position of the strategy is a very high exemplification rate. The principle downside of the technique is the chance of residual the dissolvable in the definition and its troubles to scale up [23, 26].

D. Double emulsion vesicles: In this strategy, the external portion of the liposome layer is made at second stretches between two stages by emulsification of a natural arrangement in water. If the natural arrangement, which as of now contains water bead, is brought into an abundance watery medium followed by mechanical scattering, multi-compartment vesicles are gotten. The arranged scattering so got is portrayed as a W/O/W framework. On the off chance that the natural arrangement, which as of now contains water bead, is brought into an abundance fluid medium followed by mechanical scattering, multi-compartment vesicles are acquired. The arranged scattering so acquired is portrayed as a W/O/W framework. At this progression monolayers of phospholipids encompassing each water, a compartment is intently restricted by one another. The subsequent stage is to bring about the breakdown of a specific extent of the water beads by overwhelming shaking by utilizing a mechanical vortex blender. At that point, the lipid monolayer which encased the fallen vesicle is contributed to neighboring unblemished vesicles to shape the external flyer of players of huge unilamellar Liposomes. The vesicles framed are unilamellar and are having a measurement of 0.5 micrometers. The embodiment is found to be 50% [27, 28].

3:- Detergent removal method: -
(a) Dailysis: A pilot plant under the trademark of LIPOPREPR II-CIS is accessible from Diachema, AG, Switzerland. The creation limit at higher lipid fixation (80 mg/ml) is 30 ml liposomes/minute. Yet, when lipid fixation is 10-20 mg/ml at that point up to numerous liters of liposomes can be created. In the USA, LIPOPREPR is advertised by Dianorm-Generate [3, 29].
(b) Dilution: Endless supply of fluid blended micellar arrangement of cleanser and phospholipids with cushion, the micellar size and the polydispersity increment in a general sense, and as the framework is weakened past the blended micellar stage limit, unconstrained progress from polydispersed micelles to vesicles happens [16].

EVALUATIONS OF LIPOSOMES

Physical characteristics

(1) Vesicular size & size Distribution [30]

Different strategies are portrays in the writing for assurance of size and size conveyance. These strategies incorporate light microscopy, fluorescent microscopy, Electron microscopy, laser Light Scattering, Photon Correlation Spectroscopy, Gel Permeation and Gel Exclusion, and Zetasizer. Electron microscopy is the most exact technique however subsequently is very tedious.

(A) Microscopic Techniques

(I) Optical microscopy: Vesicle size of enormous vesicles (>1μm) can be resolved to utilize Bright field, difference, and fluorescent magnifying lens.

(II) Negative stain Transmission Electron microscopy (TEM): The utilization of negative stain TEM encourages the assessment of the liposome size range at the lower end of the recurrence circulation. Negative stains utilized in TEM investigation are Ammonium Molybdate, Uranyl Acetate, and Phosphotungstic corrosive.

(III) Cryo- Transmission Electron microscopy Techniques (Cryo-TME): It has been utilized to assess the size of the vesicles and surface morphology and used to portray liposomal plans where the medication is stacked by distant stacking to guarantee their soundness. The strategy includes freeze cracking of the examples followed by their representation utilizing TEM.

(IV) Freeze fracture Electron microscopy: It is fundamentally used to decide the surface highlights and laterality. It can likewise be utilized to compute genuine vesicle breadth.

(B) Diffraction and scattering technique

(I) Laser light scattering: Laser based, semi versatile light dispersing methods are valuable to examine the homogenous colloidal particulate populaces. This procedure depends on the time subordinate lucidness of light dissipated by a vesicle. It very well may be applied to frameworks with mean width under 1μm.

(C) Hydrodynamic Techniques: These methods incorporate Gel penetration, Field Flow Fractionation, and Ultracentrifuge procedures.

(2) Surface charge [30]: Zeta potential and free stream electrophoresis are utilized to examine charge on the vesicle surface. Vesicle surface charge is determined from the versatility of the liposomal scattering in an appropriate cushion.

(3) Lamellarity [11, 31]: The Vesicle shape evaluated utilizing electron Microscopic Strategies. Lamellarity of vesicles is dictated by Freeze Break Electron Microscopy and P31 Nuclear Magnetic Reverberation Analysis.

(4) Hydrodynamic Techniques [11, 32]: This method incorporates gel Permeation and Ultracentrifuge. Prohibition chromatography on enormous unadulterated gels was acquainted with separate SUVs from spiral MLVs. The enormous vesicles of 1-3μm diameter, usually neglect to enter the gel and is held on top of the segment. A slight layer chromatography framework utilizing agarose dots has been presented as a religious community, a quick method for acquiring a good guess of size conveyance of liposome planning. Nonetheless, it was not announced if this methodology was delicate to a physical blockage of pores of the agars gel with no guarantees the more ordinary segment chromatography.
Liposome in gene delivery

(5) Zeta potential determination [16, 32]: The zeta potential was assessed by the assurance of electro portability of the 90c edge. The estimation was acted in three-fold utilizing the 3000 HS zeta-seizer gear. The example was weakened with appropriate diluents for the likely assurance.

Chemical characteristics
(1) Phospholipid Oxidation [28]-: Oxidation of the unsaturated fats of phospholipids in the absence of explicit oxidants happens to employ a free revolution any chain mechanism. The commencement step is the deliberation of a hydrogen molecule from the lipid chain that can happen most ordinarily because of presentation to electromagnetic radiation or follow the measure of tainting with the progress metal particles. Polychain-saturated lipids are especially inclined to oxidative debasement. Various procedures are accessible for deciding the oxidation of phospholipids at various stages i.e., UV absorbance strategy, TBA technique (for endoperoxides iodometric strategy (for hydroperoxides), and GLC strategy.

(2) Cholesterol Analysis [28, 33]: Cholesterol is subjectively examined utilizing a slender segment of adaptable combined silica Where, as it is quantitatively assessed (in the scope of 0-8ug) by estimating the absorbance of purple complex delivered with iron upon response with a joined reagent containing ferric perchlorate, ethyl acetic acid derivation and sulfuric corrosive at 610nm.

Biological characteristics [34]:
- Sterility: Aerobic or anaerobic culture.
- Pyrogenicity: Limulus Amebocyte Lysate (LAL) test.
- Animal toxicity: Monitoring survival rates history and pathology.

APPLICATIONS OF LIPOSOMES [12, 35, 36]

(1) Liposome as drug/protein delivery vehicles
- Controlled and sustained drug release
- Enhanced drug solubilization
- Changed pharmacokinetics and biodistribution
- Catalyst substitution treatment and biodistribution
- Protein substitution treatment and lysosomal stockpiling

(2) Liposome in antimicrobial, antifungal, and antiviral therapy
- Liposomal drugs
- Liposomal biological response modifiers

(3):- Liposome in tumor therapy
- Transporter of little cytotoxic molecules
- Vehicle for macromolecules as cytokines or genes

(4) Liposome in gene delivery
- Gene and antisense therapy
- Genetic (DNA) vaccination

Liposome in immunology
- Immunoadjuvant.
- Immunomodulator.

Liposome in the Science

CONCLUSION
Liposomes have been recognized as massively helpful transporter frameworks and instruments for focused medication conveyance. Liposomes are accomplishing clinical proposals because of their improved medication conveyance to the unhealthy areas. Liposomes are quite compelling as intracellular conveyance frameworks for against sense atoms, ribosomes, proteins/peptides, and DNA. The adaptable conduct of liposomes and their diminished poison levels are used for drug conveyance through any course of the organization and for any medication or material independent of their physiochemical properties. Nonetheless, because of the drug applications and accessible items, we can say that liposomal drug conveyance has an extraordinary guarantee later on and makes certain to go through further turns of events.

REFERENCES
30) Vyas SP, Khar RK, Maripati S, Kant S. After formulation of liposomes they are evaluated to predict their in vitro and in vivo performances.